

Mark Scheme (Results)

Summer 2016

Pearson Edexcel GCE in Chemistry (6CH05) Paper 01 General Principles of Chemistry II

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016 Publications Code 46661_MS* All the material in this publication is copyright © Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:

i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear

ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

• write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

• select and use a form and style of writing appropriate to purpose and to complex subject matter

• organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
1	В		(1)
Question Number	Correct Answer	Reject	Mark
2	С		(1)
Question Number	Correct Answer	Reject	Mark
3	A		(1)
Question Number	Correct Answer	Reject	Mark
4	D		(1)
Output!	Compact Argonica	Delast	N 4
Question Number	Correct Answer	Reject	Mark
5	В		(1)
Quanting		Delet	N 4
Question Number	Correct Answer	Reject	Mark
6	D		(1)
Question Number	Correct Answer	Reject	Mark
7	В		(1)
Question	Correct Answer	Reject	Mark
8	D		(1)
Question	Correct Answer	Reject	Mark
9	С		(1)
Question Number	Correct Answer	Reject	Mark
10	С		(1)
Question Number	Correct Answer	Reject	Mark
11a	С		(1)
Question Number	Correct Answer	Reject	Mark
11b	D		(1)

PhysicsAndMathsTutor.com

Question Number	Correct Answer	Reject	Mark
12	В		(1)
Question Number	Correct Answer	Reject	Mark
13	D		(1)

Question Number	Correct Answer	Reject	Mark
14	В		(1)

Question Number	Correct Answer	Reject	Mark
15	С		(1)

Question Number	Correct Answer	Reject	Mark
16	В		(1)

Question Number	Correct Answer	Reject	Mark
17	A		(1)

Question Number	Correct Answer	Reject	Mark
18	D		(1)

Question Number	Correct Answer	Reject	Mark
19	Α		(1)

Section B

Question Number	Acceptable Answers		Reject	Mark
20(a)	$V^{2+}(aq) + 2e^{-} \Rightarrow V(s)$ $V^{3+}(aq) + e^{-} \Rightarrow V^{2+}(aq)$ Both correct	-1.18 (V) -0.26 (V)		(1)

Question Number	Acceptable Answers	Reject	Mark
20(b)(i)	 A (salt bridge containing saturated solution of) potassium nitrate / KNO₃ ALLOW potassium chloride / KCI / sodium chloride / NaCl /sodium nitrate / NaNO₃ (1) B (electrode) platinum /Pt (1) C (solution containing) vanadium(II) and vanadium(III) ions / V²⁺ and V³⁺ ions ALLOW compounds of V²⁺ and V³⁺ (1) IGNORE any concentrations 	KI / Nal vanadium	(3)

Question Number	Acceptable Answers	Reject	Mark
20(b)(ii)	298 K / 25°C (temperature)	298°K / 273 K / 0°C / room temperature	(2)
	1 atm / 100 kPa /101 kPa / 1 bar (pressure) ALLOW atmospheric pressure IGNORE hydrogen / gas	wrong pressure units eg 100 Pa	
	1 mol dm ⁻³ (all concentrations) ALLOW this if written in (b)(i)	wrong concentration units eg 1 mol	
	ALLOW '1 molar' / 1M / equal concentrations of V ²⁺ and V ³⁺ / vanadium(II) and vanadium(III) ions		
	All 3 correct (2) Any 2 correct (1)		

Question Number	Acceptable Answers		Reject	Mark
20(c)	First mark – stand alone vanadium(IV) / V(IV) / (+)4 (oxidation sta	te)		(5)
	ALLOW V ⁴⁺	(1)		
	IGNORE VO ²⁺			
	Second mark $E^{\Theta}_{cell} (= 1.00 - 0.54)$ = (+)0.46 (V)	(1)		
	Third mark $2VO_2^+ + 4H^+ + 2I^- \rightarrow 2VO^{2+} + 2H_2O + I_2$		Mention of	
	ALLOW multiples / ≓	(1)	reduced	
	IGNORE any working before this equation			
	Fourth mark For the reduction of V (IV) to V (III) E_{cell}^{Θ} (= 0.34 - 0.54) = -0.2(0) (V)		Incorrect value	
	OR <i>E</i> [°] _{cell} for the reaction between VO ²⁺ and I ⁻ i negative (so V(IV) is not reduced to V(III))	S)		
	OR I ₂ /I ⁻ electrode potential / SEP / E° value is positive than the VO ²⁺ /V ³⁺ value (so V(IV) reduced to V(III))	more is not		
	OR VO ²⁺ /V ³⁺ electrode potential / SEP / <i>E</i> ^e value less positive than the I ₂ /I ⁻ value (so V(IV) reduced to V(III)) (1)	ue is is not		
	IGNORE equation for VO ²⁺ and I [−]			
	Fifth mark – stand alone E°_{cell} is positive / greater than 0 so (first) resis feasible and	eaction		
	is not feasible	eaction		
	ALLOW spontaneous for feasible IGNORE incorrect values provided the sign correct	(1) s are		

Total for Question 20 = 11 marks

Question Number	Acceptable Answers	Reject	Mark
21(a)(i)	2-aminopropanoic acid has peak ratio3:2:1:1 (in any order)(1)	They have different numbers of	(2)
	3-aminopropanoic acid has peak ratio2:2:2:1 (in any order)(1)	peaks negates 1 mark only	
	If no other mark is awarded, allow for 1 mark: 1 stated difference between the peak ratios e.g. only 2-aminopropanoic acid has a peak with area / height 3		
	IGNORE splitting patterns / chemical shift values even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
Number 21(a)(ii)	Not chiral, as there is no carbon atom with 4 different atoms or groups attached ALLOW Not chiral, as there is no asymmetric carbon atom / there is a plane of symmetry in the molecule / there are two hydrogens attached to (both) carbons IGNORE there is no chiral carbon atom / does not have any enantiomers	Species /molecules	(1)
	IGNORE Not chiral, as mirror image is superimposable / it does not have a non-superimposable mirror image		

Question Number	Acceptable Answers	Reject	Mark
21(a)(iii)	ALLOW skeletal / displayed / structural formulae or any combination of these		(2)
	ALLOW CO ₂ H for COOH / C ₂ H ₄ or $(CH_2)_2$ for CH_2CH_2		
	$^{+}H_{3}NCH_{2}CH_{2}COO^{-} + H^{+} \rightarrow ~^{+}H_{3}NCH_{2}CH_{2}COOH$		
	ALLOW H ₂ NCH ₂ CH ₂ COOH + H ⁺ \rightarrow ⁺ H ₃ NCH ₂ CH ₂ COOH (1)		
	${}^{+}H_{3}NCH_{2}CH_{2}COO^{-} + OH^{-} \rightarrow H_{2}NCH_{2}CH_{2}COO^{-} + H_{2}O$ ALLOW $H_{2}NCH_{2}CH_{2}COOH + OH^{-} \rightarrow H_{2}NCH_{2}CH_{2}COO^{-} + H_{2}O$ (1)		
	ALLOW (1) for just 2 correct organic products		
	ALLOW (1) for 2 correct equations using 2-aminopropanoic acid		

Question Number	Acceptable Answers	Reject	Mark
21(a)(iv)	H H O H H O 	Use of 2- aminopropanoic acid	(1)
	Extension bonds must be present and can be solid or dotted	1 repeat unit /more than 2 repeat units	
	ALLOW $(CH_2)_2 / C_2H_4$		
	ALLOW structural / skeletal / displayed formulae or any combination of these e.g. –NH(CH ₂) ₂ CONH(CH ₂) ₂ CO-		
	IGNORE brackets / n		

Question Number	Acceptable Answers	Reject	Mark
21(b)(i)	sodium nitrite / sodium nitrate(III) / NaNO ₂ and hydrochloric acid / HCI / sulfuric acid / H ₂ SO ₄ ALLOW nitrous acid / HNO ₂ (and hydrochloric acid / HCI) (1) IGNORE concentration of hydrochloric acid at 5 °C/ between 0 and 10 °C. Conditional on correct or 'near miss' reagents ALLOW any temperature or range of temperatures within range /ice bath / less than 5/10°C (1)	Just sodium nitrate Incorrect formula with correct name or vice versa Conc H ₂ SO ₄	(2)

Question	Acceptable Answers	Reject	Mark
Number			
21(b)(ii)	NaO SO ₃ Na ALLOW -O ⁻ (Na ⁺) / -SO ₃ ⁻ Na ⁺	Covalent bond between Na and O	(1)
	HO SO ₃ Na	O–H– / OH– attached to benzene ring	

Question Number	Acceptable Answers	Reject	Mark
21(b)(iii)	Restricted rotation around N=N	the molecule does not rotate	(1)
	ALLOW no rotation		
		limited rotation	
	ALLOW restricted / no rotation around		
	the nitrogen / azo bridge	restricted / no	
		rotation around	
	ALLOW restricted / no rotation around	C=C	
	the double bond		

Question Number	Acceptable Answers	Reject	Mark
21(b)(iv)	Dissolve it in the minimum amount of hot ethanol /solvent (1)	Add ethanol /solvent then heat	(4)
	Filter whilst still hot (to remove the insoluble impurities)	To remove soluble impurities	
	ALLOW this mark if hot is omitted and it follows M1 and is followed by cool (1)		
	Cool / use an ice bath (and allow crystals to form) (1)		
	Filter and dry the crystals	To remove insoluble impurities	
	ALLOW any method of filtration / any suitable method of drying e.g. on filter	Use of an	
	paper / leave to dry / in a (warm) oven / put in a desiccator (1)	anhydrous salt for drying unless in a	
	IGNORE wash with ethanol /water	desiccator	

Question Number	Acceptable Answers	Reject	Mark
21(b)(v)	Compare the melting temperature with Data Book / known / literature value OR It has a sharp melting temperature OR Melting temperature is ± 2°C of the Data Book / known / literature value OR (Thin layer) chromatography has a single (yellow) spot IGNORE references to spectroscopy / HPLC / GC	boiling temperature	(1)

Question	Acceptable Answers		Reject	Mark
Number				(-)
21(c)	IGNORE conditions unless in Reject column / mechanisms / equations			(5)
	ALLOW names or formulae for reagents but be must be correct if given	oth		
	First step Potassium / sodium dichromate((VI)) / K_2Cr_2O Na ₂ Cr ₂ O ₇ / Cr ₂ O ₇ ²⁻ and (dilute) sulfuric acid / acidified ALLOW MnO ₄ ⁻ / H ⁺	7 / H⁺/ (1)	hydrochloric acid / HCl / concentrated H ₂ SO ₄	
	First intermediate - stand alone			
			just 'benzoic acid'	
	ALLOW –CO ₂ H / displayed formula IGNORE formation of an aldehyde	(1)		
	Second step – from benzoic acid phosphorus(V) chloride / PCI ₅ / phosphorus(III) chloride / PCI ₃ / thionyl chloride /SOCI ₂	(1)	hydrochloric acid/HCl	
	Second intermediate – stand alone		Just 'benzoyl chloride'	
	ALLOW COCI displayed	(1)		
	Third step – from benzoyl chloride (concentrated) ammonia	(1)	Ethanol	
	Alternative route for last 3 marks Second step – from benzoic acid ammonium carbonate /ammonia Second intermediate	(1)	Additional reagents	
	ALLOW COO ⁻ displayed / COONH ₄ with no cha	rges (1)		
	Third step – from ammonium benzoate Heat			
	phosphorus(V) oxide /P ₂ O ₅ /P ₄ O ₁₀	(1)		

Total for Question 21 = 20 marks

Question Number	Acceptable Answers	Reject	Mark
22(a)	First mark Electronic configurations: Cu ²⁺ is [Ar] 3d ⁹ and Zn ²⁺ is [Ar] 3d ¹⁰ IGNORE 4s ^o / full electronic configuration of Ar (1) Second mark If both EC are correct: EITHER Copper (is a transition element because it) forms a (stable) ion with an incompletely / partially filled d-subshell / orbital(s) ALLOW forms an ion with unpaired d electron(s) OR Zinc only forms an ion with a full d-subshell / all d orbitals full If one or both EC are incorrect: Copper (is a transition element because it) forms a (stable) ion with an incompletely filled d-subshell / all d orbitals full If one or both EC are incorrect: Copper (is a transition element because it) forms a (stable) ion with an incompletely filled d-subshell / orbital(s) and zinc only forms an ion with a full d-subshell / all d orbitals full If one or both EC are incorrect:	d shell sub- shell / orbital other than 3d	(2)

Question Number	Acceptable Answers	Reject	Mark
22(b)	CuCl + AgCl \rightleftharpoons CuCl ₂ + Ag OR Cu ⁺ + Ag ⁺ \rightleftharpoons Cu ²⁺ + Ag OR CuCl + Ag ⁺ \rightleftharpoons Cu ²⁺ + Ag + Cl ⁻ ALLOW \rightarrow (1) IGNORE state symbols / half-equations		(2)
	Stand alone mark (Equilibrium moves to the right in sunlight) producing silver(1)IGNORE copper(II) compounds	Copper (metal)/ copper(I) compounds	

PhysicsAndMathsTutor.com

Question Number	Acceptable Answers	Reject	Mark
22(c)	Shape – square planar $\begin{bmatrix} c_{1} \\ c_{2} \\ c_{1} \\ c_{1} \\ c_{1} \\ c_{2} \\ c_{1} \\ c_{2} \\ c_{2} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{5} \\ c_{$		(2)
	ALLOW tetrahedral shape(1)IGNORE brackets and/or chargesBonding - dative (covalent) /co-ordinate		
	ALLOW shown on diagram as arrows from CI to Cu (1)		

Question Number	Acceptable Answers	Rej ect	Mark
22(d)(i)	$Cu + CuCl_2 + 2HCI \rightarrow 2[CuCl_2]^- + 2H^+$		(1)
	OR		
	$Cu + Cu^{2+} + 4Cl^{-} \rightarrow 2[CuCl_2]^{-}$		
	OR		
	$Cu + [Cu(H_2O)_6]^{2+} + 4Cl^- \rightarrow 2[CuCl_2]^- + 6H_2O$		
	OR		
	$Cu + [Cu(H_2O)_6]^{2+} + 4HCI \rightarrow 2[CuCl_2]^- + 6H_2O + 4H^+$		
	OR		
	$Cu + CuCl_2 + 2Cl^- \rightarrow 2[CuCl_2]^-$		
	IGNORE state symbols, even if incorrect /		
	missing brackets		

Question Number	Acceptable Answers	Reject	Mark
22(d)(ii)	Disproportionation is the simultaneous oxidation and reduction of a (single) species / atom / element / ion (to form 2 different oxidation states) (1)		(2)
	IGNORE reactant / substance / molecule / compound		
	Not disproportionation because two different species (of copper) are oxidised and reduced		
	OR Not disproportionation as (start with 2 different oxidation states of copper and) only produces 1 oxidation state		
	ALLOW Disproportionation is the other way around / this is reverse disproportionation / comproportionation (1)		

Question Number	Acceptable Answers	Reject	Mark
22(d)(iii)	The d-subshell is full / d ¹⁰	d orbital	(2)
	OR		
	all d orbitals are full	any number	
	ALLOW	other than 3(d)	
	d sholl is full (1)		
	u shell is full (1)		
	d-d transitions cannot take place	d-subshell /	
		d orbitals do	
	OR	not split	
	Electrons cannot move between d orbitals		
	OR		
	Electrons cannot be promoted / excited to		
	higher d orbital(s) (1)		
	IGNORE just 'movement to different energy		
	level'		

Question Number	Acceptable Answers	Reject	Mark
22(e)(i)	tate symbols are requiredEquations with NaOH / Na ⁺ / SOORE missing square bracketsSOORE missing square bracketsSO42- ions	(1)	
	$Cu^{2+}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_{2}(s)$		
	OR $[Cu(H_2O)_6]^{2+}(aq) + 2OH^-(aq) \rightarrow Cu(OH)_2(s) + 6H_2O(l)$ OR $[Cu(H_2O)_6]^{2+}(aq) + 2OH^-(aq) \rightarrow Cu(OH)_2(H_2O)_4(s) + 2H_2O(l)$ OR $Cu^{2+}(aq) + 2OH^-(aq) + 4H_2O(l) \rightarrow Cu(OH)_2(H_2O)_4(s)$ ALLOW equations with $[Cu(H_2O)_4]^{2+}(aq)$		

Question Number	Acceptable Answers	Reject	Mark
22(e)(ii)	Ligand exchange / ligand substitution / ligand replacement	Acid/base reaction	(1)
		Deprotonation	

Question Number	Acceptable Answers	Reject	Mark
22(f) (i)	Ligand has 2 atoms that can form (co-ordinate / dative covalent) bonds (to the metal ion) ALLOW Has 2 lone pairs that form (co-ordinate / dative covalent) bonds ALLOW Has 2 lone pairs that it donates (to the metal ion) ALLOW Forms 2 (co-ordinate / dative covalent) bonds (to the metal ion)	2 ligands attached to the ion Ionic bond Just 'has 2 lone pairs'	(1)
	bonds (to the metal ion)		

Question Number	Acceptable Answers	Reject	Mark
22(f)(ii)	First mark (there are) more particles / moles / species on the right (of the equation)	Molecules / atoms	(2)
	(there is an increase from) 4 particles / moles / species on the left of the equation to 7 on the right (1)	Incorrect numbers of particles / moles	
	Second mark (so) ΔS_{system} increases / is positive (and the reaction is thermodynamically feasible)		
	ALLOW ΔS_{total} is positive / increasing (and the reaction is thermodynamically feasible)		
	ALLOW (there is) an increase in entropy (and the reaction is thermodynamically feasible) (1)		
	IGNORE Just 'disorder increases'		

Total for Question 22 = 16 marks

Section C

Question Number	Acceptable Answers	Reject	Mark
23(a)	(acid) amide / N-substituted amide / N- substituted ethanamide / secondary (substituted) amide / substituted amide IGNORE benzene / arene / phenyl	Amine / amino acid / carboxylic acid / acid / ester	(1)

Question Number	Acceptable Answers	Reject	Mark
23(b)(i)	$\begin{array}{rcrcrc} (HNO_3 &+ & H_2SO_4 &\rightarrow & H_2NO_3^+ &+ & HSO_4^-) \\ base/ & acid/ & conjugate & conjugate \\ & acid/ & base/ \\ base 1 & acid 2 & acid 1 & base 2 \\ \end{array}$		(1)

Question Number	Acceptable Answers	Reject	Mark
23(b) (ii)	If benzene used instead of phenol OR if final product is not 4-nitrophenol (max 2) $ \begin{array}{c} $		(3)
	First mark Curly arrow from on or within the circle to the N of NO2+ ALLOW curly arrow from anywhere within the hexagon ALLOW curly arrow to any part of the NO2+ including to the + charge (1)	Lone pair on N Curly arrow on or outside the hexagon	
	Second markIntermediate structure including charge with horseshoe covering at least 3 carbon atomsand facing the tetrahedral carbonand some part of the positive charge must be within the horseshoeALLOW dotted horseshoe(1)	Dotted bonds to H and NO ₂ unless as part of a 3-D structure	
	Third mark Curly arrow from C—H bond to anywhere in the hexagon, reforming the delocalised structure (1) IGNORE any involvement of HSO ₄ ⁻ in the final step Correct Kekule structures score full marks	Curly arrow from H	

Question Number	Acceptable Answers	Reject	Mark
23(b)(iii)	Lone pair of electrons on oxygen (may be shown on a diagram)		(2)
	and		
	EITHER overlaps with pi cloud /delocalised electrons / delocalised system		
	OR Feeds into / donates into / interacts with (benzene) ring /delocalised electrons / delocalised system		
	ALLOW Increases the electron density of the (benzene) ring (1)		
	(Increased electron density) makes the ring more susceptible to electrophilic attack	Ring is more electro- negative	
	ALLOW phenol is a better nucleophile (1)		

Question Number	Acceptable Answers	Reject	Mark
23(b)(iv)	Reduction	Hydrogenation	(1)
	ALLOW redox		

Question Number	Acceptable Answers	Reject	Mark
23(b)(v)	ethanoyl chloride / CH ₃ COCI / ethanoic anhydride / (CH ₃ CO) ₂ O If name and formula are given, both must be correct	ethanoic acid / CH₃COOH	(1)
	IGNORE acid chloride / acid anhydride		

Question Number	Acceptable Answers	Reject	Mark
23(b)(vi)	Hydrogen bonds present in both compounds		(2)
	ALLOW if this is clearly implied e.g. 4-nitrophenol forms more hydrogen bonds than 2-nitrophenol (1)		
	4-nitrophenol forms intermolecular hydrogen bonds and		
	2-nitrophenol forms intramolecular hydrogen bonds (so less intermolecular hydrogen bonds)		
	ALLOW this shown in diagrams / a clear description (1)		
	IGNORE references to other intermolecular forces		

Question Number	Acceptable Answers	Reject	Mark
23(c)(i)	$HO = \frac{NH_2}{1000} + 2Ce^{4+} + 2Ce^{3+}$	electrons left in equation	(1)
	OR		
	$HOC_6H_4NH_2 + 2Ce^{4+} \rightarrow OC_6H_4NH + 2H^+ + 2Ce^{3+}$		

Question Number	Acceptable Answers		Reject	Mark
23(c)(ii)	95.1(3)% with or without working scores (5	5)	Incorrect units once only	(5)
	mol Ce ⁴⁺ used = $12.60x0.100/1000$ = $1.260x10^{-3}$	(1)		
	mol 4-aminophenol in 20.0 cm ³ = $1.260 \times 10^{-3}/2$ = 6.30×10^{-4}			
	TE on mole ratio in (c)(i)	(1)		
	mol 4-aminophenol/paracetamol in 100 cm ³ = $6.30 \times 10^{-4} \times 5$ = 3.15×10^{-3}	3		
	TE on mol in 20.0 cm ³	(1)		
	mass paracetamol in 100 cm ³ = 3.15x10 ⁻³ x 151 = 0.47565 (g)			
	TE from mol in 100 cm ³	(1)		
	% paracetamol = $\frac{0.47565}{0.500} \times 100$ = 95.1(3)(%)			
	TE from mass paracetamol in 100cm ³ as lor as answer is less than 100%	ng (1)		
	IGNORE SF except 1SF			
	ALLOW alternative methods			

Question Number	Acceptable Answers	Reject	Mark
23(d)(i)	OH OH	Circle covering additional carbon atoms	(1)
		More than one carbon atom indicated	
	ALLOW other ways of indicating the correct carbon atom eg with a circle		

Question Number	Acceptable Answers	Reject	Mark
23(d)(ii)	Mark independently		(2)
	First mark Any one problem from:		
	Producing a single enantiomer / isomer gives low atom economy / gives (a lot of / 50%) waste / low yield (of required isomer)		
	OR Separating the two enantiomers / isomers is difficult / expensive / uses (a lot of) energy (1)		
	IGNORE just 'a racemic mixture is formed' / unwanted isomer may be harmful / toxic / have side effects		
	Second mark Any one solution from:		
	Produce a single isomer by using enzymes / bacteria / a biological catalyst /	Combinatorial chemistry	
	asymmetric synthesis / stereospecific synthesis	Passing reactants over reagents on	
	OR Use a (natural) chiral molecule as a starting material		
	ALLOW Use of $S_N 2$ instead of $S_N 1$ (1)		
	IGNORE remove harmful /unwanted products		

Question Number	Acceptable Answers	Reject	Mark
23(e)	Any one reason from:		(1)
	(The three step synthesis will) Increase atom economy / reduce waste		
	OR Increase / give a higher (percentage) yield		
	OR Use less energy / fuel		
	ALLOW reverse argument for the six step synthesis		
	IGNORE references to costs / raw materials / efficiency / pollution		

Question Number	Acceptable Answers	Reject	Mark
23(f)	$ \begin{array}{c} () \\ () $	Charges outside brackets, once only, if both ions are correct and there are no charges inside the bracket	(2)

Total for Section C = 23 marks

PhysicsAndMathsTutor.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R ORL